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Fig. 1. Given a rough 3D sketch (left, note small gaps that are intended to be connected), our variational optimization reconstructs a 3D surface that aims to
capture designer intent (right). One of the core goals of this optimization is to smoothly interpolate principal curvatures guided by the input strokes (center).

3D sketches are an effective representation of a 3D shape, convenient to
create via modern Virtual or Augmented Reality (VR/AR) interfaces or from
2D sketches. For 3D sketches drawn by designers, human observers can
consistently imagine the surface they imply, yet reconstructing such a surface
with modern methods remains an open problem. Existing methods either
assume a clean, well-structured 3D curve network (while in reality most 3D
sketches are rough and unstructured), or make no effort to produce a surface
consistent with perceptual observations. We propose a novel method that
addresses this challenge by designing a system that reconstructs a surface
that better aligns with human perception from a clean or rough set of 3D
sketches. As the topology of the desired surface is unknown, we use an
implicit neural surface representation, parameterized via its gradient field.

As suggested by previous perception and modelling literature, human
observers tend to imagine the surface by interpreting some of the input
strokes as representative flow-lines, related to the lines of curvature, and
imagining the surface whose curvature agrees with those. Inspired by these
observations, we design a novel loss that finds the surface with the smoothest
principal curvature field aligned with the input strokes. Together with ap-
proximation and piecewise smoothness requirements, we formulate a varia-
tional optimization that performs robustly on a wide variety of 3D sketches.
We validate our algorithmic choices via a series of qualitative and quantia-
tive evaluations, and comparisons to ground truth surfaces and previous
methods.
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1 Introduction

Powered by modern virtual reality (VR) interfaces, 3D sketches are
fast to create, intuitive, and expressive. They can capture the essence
of a 3D shape, while allowing for more flexibility and requiring less
specialized training than standard surface modelling tools. By their
design, many 3D sketches are drawn to convey a unique surface to
human observers, yet reconstructing that surface is still an unsolved
challenge.

One kind of 3D sketch, a structured curve network, is a set of clean
3D curves neatly connected at junctions and intersections (e.g. ,
Fig. 2). This type has been the focus of much of the previous research.
A common approach to surfacing structured curve networks is to
rely on their precise connectivity and to decompose them into loops
[Abbasinejad et al. 2011; Zhuang et al. 2013]. Each loop can be
then fitted separately by a surface patch [Malraison 2012], possibly
enforcing smoothness with adjacent surface patches if necessary. For
such curve networks, previous work observed that the input curves
are dominated by representative flow lines, roughly related to lines
of curvature but allowing for artistic license [Bordegoni and Rizzi
2011; Gahan 2010]. Viewers then mentally complete the network
of given flow lines, smoothly interpolating the given strokes and
following the given principal curvatures [Bessmeltsev et al. 2012;
Tarussi et al. 2015; Pan et al. 2015]. Mimicking this perceptual process,
the previous work proposed surfacing each loop by minimizing a
specialized flow-alignment energy that aligns principal curvature
field of the surface with a smooth flow field — a pair of directions
and magnitudes per point — aligned with the input strokes [Pan
et al. 2015].
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Fig. 2. Compared to more traditional regularizations like surface smooth-
ness or surface area (producing minimal surfaces), our flow alignment energy
(right) follows the perceptual observations, making the surface agree better
with observer’s expectations.

The majority of 3D sketches, however, are not clean and not struc-
tured; they contain overdrawing, imprecise junctions, and cannot
be easily decomposed into loops (Fig. 1, Fig. 11), making them inac-
cessible to those methods. While there are systems surfacing those
curve networks, for instance by simply converting them into point
clouds, they make no attempt to find perceptually valid surfaces.
Instead, they focus on particular, purely geometric desiderata like
(piecewise) smoothness, minimizing surface area, or developability
(Fig. 2). Thus, the problem of surfacing general 3D curve networks,
rough or clean, in a manner consistent with designer intent remains
an open challenge.

We address this challenge by introducing a novel system that
targets both clean and rough 3D sketches in a variational optimiza-
tion framework. The variational optimization allows our system
to be robust to the inaccuracies and inconsistencies in the input
sketch, while avoiding converting it into a point cloud that would
lose the tangent information. We represent the surface implicitly via
a gradient-domain neural network coupled with a high-resolution
Poisson equation solver via a Fast Fourier Transform. Using this rep-
resentation, we reformulate and reparameterize the flow alignment
energy, which forms the core component of our system, regularizing
surfaces in a manner consistent with designer perception.

Our main technical contributions are:

o areformulation and reparameterization of the flow-alignment
energy to the implicit surface representation and

e anovel system for flow-aligned surfacing of 3D sketches or
clean curve networks.

We validate our system on a series of 3D sketches and clean curve
networks. We demonstrate that compared to previous works, our
surfaces better match designer intent both qualitatively (via visual
inspection) and quantitatively (via common metrics).

2 Related Work
2.1 Surfacing 3D Sketches

Progress in surfacing 3D sketches parallels advances in sketching
interfaces. Early systems emphasized clean 3D curve networks with
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explicit connectivity, created via sketch-based interfaces [Bae et al.
2008; Schmidt et al. 2009] or lifted from 2D strokes [Cordier et al.
2013; Xu et al. 2014]. VR/AR tools such as TiltBrush, GravitySketch,
and Quill [Google 2016; GravitySketch 2017; Smoothstep 2021] popu-
larized intuitive 3D sketching but typically yield rough, unstructured
curve clouds [Arisoy et al. 2012], due to the lack of hand support and
fine motor control [Arora et al. 2017; Machuca et al. 2018]. Systems
like CASSIE [Yu et al. 2021] address this by consolidating sketches
in real time, at the cost of altering the natural sketching process.

Consequently, the methods of surfacing 3D sketches can be di-
vided into two groups: clean curve networks and rough sketches.
For the former, early works surface cycles independently [Abbasine-
jad et al. 2011; Orbay and Kara 2012; Sadri and Singh 2014; Zhuang
et al. 2013], extended by Rasoulzadeh et al. [2023] to imprecise
architectural sketches. More recent efforts reconstruct perceptu-
ally valid, flow-aligned surfaces [Bessmeltsev et al. 2012; Pan et al.
2015], which we explore in our work (Sec. 3). Most relevant, Pan
et al. [2015] initialize with minimal surfaces per cycle and deforms
them to align curvature with the induced flow field. Inspired by
this, we adapt their energy to neural implicit surfaces, enabling
reconstruction from rough sketches without stroke connectivity.

Our focus is surfacing both clean and rough 3D sketches. A pi-
oneering work [Arisoy et al. 2012] reconstructs a surface via a
deformation of an initial sphere mesh to match a gradient vector
field estimated from the input sketch. Guided by similar intuition,
Sureshkumar et al. [2025] deform a surface via solving a series of
biharmonic surface interpolations. Exploring similar ideas, a recent
work [Yu et al. 2022] proposes a complementary approach to ours
that deforms a given mesh template, either created manually or via
point cloud reconstruction methods, to fit the 3D sketch, focusing
on creating sharp ridges. Our method can be used to produce this
initial template of a better quality than previous methods. We show
an example of applying their deformation method to our results in
Fig. 8.

The work of Stanko et al. [2016] reconstructs surfaces when
the normals are also known. Normals are usually non-trivial to
obtain. A related input modality, VR ribbons, uses the VR controller’s
orientation to obtain normals. In general, drawing ribbons can be
physically challenging for the wrists, but this can be somewhat
alleviated given a convenient, albeit non-standard, VR interface
[Rosales et al. 2021]. We focus on a simpler and more popular input
modality, 3D sketches, which are composed of 3D strokes with no
known normals. Our system supports both structured ‘clean’ 3D
curve networks and unstructured rough 3D sketches equally well
(Sec. 6).

2.2 Surfacing Point Clouds

One way to surface 3D sketches is to ignore the stroke information
and simply convert them into a point cloud by sampling the strokes.
Our method is inspired by the progress in this area despite lever-
aging the stroke information. A full survey of numerous works in
point cloud reconstruction is outside our scope, please see surveys
[Berger et al. 2017; Huang et al. 2024].

Learning—free Methods. Compared to typical point clouds, 3D
sketches are extremely sparse (Fig. 10). As discussed in Yu et al.



[2022], many point cloud reconstruction methods assume dense
sampling, so most of these methods fail on our input data [Carr et al.
2001; Fleishman et al. 2005; Hoppe et al. 1992; Kazhdan et al. 2020,
2006; Kazhdan and Hoppe 2013]. Many of those methods additionally
require normals, which are hard to estimate for 3D sketches. Among
earlier surfacing methods, some only support filling in small holes
[Sorkine-Hornung and Kobbelt 2006] or use primitive fitting to
complete missing parts of the point clouds [Schnabel et al. 2009;
Tagliasacchi et al. 2009].

Our method is partially inspired by VIPSS [Huang et al. 2019],
an important exception to this rule. Their method finds an implicit
surface that minimizes surface smoothness expressed as Duchon’s
energy, while simultaneously enforcing unit gradient on the input
points. Because of this crucial constraint related to the Eikonal
equation, their method works even on such sparse inputs as 3D
sketches. Their choice of basis and energy, however, often leads to
overly smooth results (Sec. 6).

A few other works can support sparse point clouds, including
sampled 3D sketches. Hou et al. [2022] iteratively performs Poisson
surface reconstruction and updates the point cloud normals. In a
related work, Lin et al. [2022] express an indicator function via the
Gauss formula, and solve for linearized surface elements associated
with the input points. Xu et al. [2023] orients the normals of a point
cloud such that the generalized winding number field becomes as
close as possible to binary-valued 0-1. In contrast to those methods,
our surface reconstruction uses the flow alignment energy to mimic
the perceptual process of surfacing 3D sketches. We compare with
those methods in Sec. 6.

Learning-Based Methods. A large volume of previous literature
learns geometric priors for point cloud reconstruction in a super-
vised fashion [Chabra et al. 2020; Erler et al. 2020; Huang et al. 2022;
Jiang et al. 2020; Lin et al. 2023; Ma et al. 2022; Mescheder et al.
2018; Park et al. 2019; Tang et al. 2021; Wang et al. 2022]. Unfor-
tunately, 3D sketches do not have a sizable ground truth dataset
with corresponding surfaces, so supervised learning is not possible.
Generating such a dataset from existing shape datasets is challeng-
ing, as the modern techniques to extract a curve network from a
3D surface do not capture the stylistic range of real designer 3D
sketches [Gori et al. 2017].

Self-supervised learning for point cloud reconstruction [Atzmon
and Lipman 2019, 2020; Li et al. 2023] is more relevant to our work.
Atzmon and Lipman [2019; 2020] use neural network to learn a
signed distance function to the surface from an unsigned distance to
the point cloud via a sign-agnostic loss. Li et al. [2023] incorporates
neural gradients along with the neural function itself into the loss.
Their method promotes local planarity, which is not the right prior
for generic 3D sketches, so we use flow field alignment instead.
Gropp et al. [2020] learns an implicit geometric prior by minimizing
an Eikonal term on the input point cloud. We use a similar regu-
larizer. A known issue with Eikonal equation is that its solutions
are not unique, leading to problematic convergence. An interesting
approach to address this issue is a p-Poisson equation-based regu-
larization and splitting the implicit function and its gradient into
separate variables [Park et al. 2023]. Alternatively, one can further
regularize the learned signed distance field via a ‘pull’ reprojection
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loss [Ma et al. 2020]. Another approach is to observe that gradients
of signed distance fields tend to have low divergence almost every-
where, which motivates using a divergence-minimizing term as a
regularizer [Ben-Shabat et al. 2021]. Some other works use more
targeted priors for developable surfaces by minimizing either the
absolute value of Gaussian curvature [Dong et al. 2024b] or the
rank of the Hessian of the implicit surface [Wang et al. 2023]. Even
though piecewise developable surfaces are a mainstay in specific
domains, such as machine-made shapes, not all sketched surfaces
are intended to be developable (Fig. 2, Fig. 11). Instead, we use a prior
of flow-aligned surfaces, specifically designed for curve networks
(Sec. 3).

Some works extend these approaches to shapes with boundaries
by learning an unsigned distance field [Tian et al. 2024; Zhou et al.
2022], after which the surface extraction process becomes more
challenging. Unlike point clouds with unknown surface boundaries
a priori, in 3D sketches, boundaries are delineated by one or a few
strokes that are trivial to annotate [Yu et al. 2022]. Therefore, fol-
lowing previous work [Huang et al. 2019], we prefer working with
a signed implicit function, and extracting the surface via marching
cubes followed by cutting along those strokes (Suppl. Sec.0.1.2).

3 Background and Observations

Mathematically, the problem of surfacing a given 3D sketch, i.e.,
set of 3D strokes, is ill-posed, as there are infinitely many surfaces
interpolating or approximating the input. In contrast, a 3D sketch
drawn by a designer often conveys a unique surface to a human
observer. To explain this phenomenon, previous work has provided
insight into how designers create 3D sketches, which strokes com-
prise a sketch, and how human observers interpret sketches; these
insights inform our algorithmic decisions.

In the context of clean structured 3D curve networks, design
literature, as well as previous perceptual and geometric modeling
research [Bessmeltsev et al. 2012; Bordegoni and Rizzi 2011] sug-
gests that many designer-drawn strokes can be classified into two
types: flow-lines (inset, blue), which represent lines of curvature of
the intended surface, and trim lines, which outline surface bound-
aries or sharp features (inset, green). The viewers then leverage

this descriptive representation of the surface [Xu et al. 2014] and
mentally interpolate the given strokes according to the stroke types,
imagining the final surface [Pan et al. 2015].

Pan et al. [2015] formalise this surfacing insight in the following
way. They classify input strokes into flow lines and trim curves; the
former control the surface curvature, the latter are only expected to
lie on the surface. Starting from an initial mesh that bounds the input
curves, they iterate between computing a cross field (on that mesh)
that aligns with flow lines and deforming the mesh to minimize the
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Fig. 3. (a) The smoothest flow field aligned with the input boundary strokes.

(b) A surface with its principal curvature directions (note they are different
from the flow field in (a)). Previous studies have suggested that the surface
(b) with princial curvature directions as close as possible to the smoothest
flow field (a) is consistent with artist intent on clean curve networks. We
follow this observation, applying and adapting it to the context of rough 3D

sketches with no adjacency information, for a neural implicit representation.

Note the necessary singularity for a smooth flow field (red vertex in (a)).

difference between its principal curvatures and the cross field. The
final result is a surface whose principal curvature directions align
with the identified flow lines.

Concretely, for an arbitrary surface containing these strokes, the
flow lines I'° give rise to a flow field — a smooth cross field with
associated (signed) magnitudes. More specifically, the flow field is

U = (ug,u2) : R? > R xR3,

1
A=) RS RXR, W

where ug (x) and uy(x) are orthogonal unit vectors and 1; (x), A2(x)
are curvature descriptors. On and near the curves I'°, one of the
pair (u, A1), (uz, A2) is provided by the curve tangent T(x) and
curvature x(x), thus aligning the flow field to the input flow lines
I'°. Away from the input strokes, they expect the flow field to be as
smooth as possible (Fig. 3).

The second fundamental form of a surface S is the bilinear form
IIs associated with the differential of the normal:

IIg(v,w) = (dyn, w). 2)

The eigenvalues of the second fundamental form are the principal
curvatures k1, k2, and the corresponding eigenvectors pq, p2 are
the principal curvature directions; this decomposition encodes an
orthonormal basis of the tangent plane along which the normal
curvature is maximized / minimized. Pan et al. [2015] align the flow
field with the principal curvatures by minimizing

min /S IT1(A, U) = Ts|[dx + Lomooth (Us 1) + Latign (U, A), (3)

where the two last terms are flow field smoothness and alignment

to the input strokes, and
A 0 ui
0 A u, ’

Pan et al. [2015] iteratively solve for the smoothest flow field for
a given surface (Fig. 3a) and then update the surface to match the
flow field (Fig. 3b). Their strategy can be seen as coordinate descent,

II(A,U) = [ul uz]
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alternating between minimizing two last terms in Eq. 3 for a fixed S
and minimizing the first term holding the U, A fixed.

Observations. In contrast to the clean curve networks addressed
by Pan et al. [2015], rough 3D sketches, the focus of this work
are more complex in that they contain gaps, broken or overdrawn
curves, and imprecisely drawn junctions and intersections (Fig. 11).
We observe, however, that design 3D sketches are also dominated by
flow lines. Thus, we expect the viewers to complete the surface in a
similar manner with clean curve networks. In general, 3D sketches
may also contain construction lines that do not control the surface
shape and are needed for alignment [Gryaditskaya et al. 2019]; we
assume those are explicitly labelled and ignored by our pipeline.

Our input is a set of 3D sketch strokes ' = {yp, - - - , yn'}, where
each y; is a curve in R? with or without end points; some strokes
I'? might be annotated as the desired boundary of the surface. We
assume all geometry is scaled to fit the unit cube Q = [0, 1]3.

We formulate the following requirements for the target surface:

o Stroke approximation. We expect the final surface to be
as close as possible to the input strokes where there is no
ambiguity, approximating rough and overdrawn strokes on
average, not necessarily interpolating them. This applies to
both flow lines and trim curves equally.

Flow-alignment. We expect the surface’s principal curva-
tures to be aligned with the smooth flow-field induced by the
flow line strokes. We expect the magnitudes of principal cur-
vatures to also change smoothly over the surface, including
across the input strokes.

Piecewise smoothness. Natural shapes are usually smooth,
while machine-made shapes, are usually piecewise smooth.
We target both of these common shape types in our system.
We furthermore follow the observation that designer-created
sketches are usually descriptive [Xu et al. 2014], meaning
that they contain all the necessary features for a human ob-
server to imagine the shape. As a result, we do not expect any
discontinuities to appear away from the drawn strokes. We
therefore require, subject to the first two requirements, the
final surface so be at least piecewise smooth, with sharper
creases possible only at some input strokes.

These requirements guide our algorithmic choices, including the
representation, losses, and the optimization strategy, as described
in the following section.

4 Method

We first describe our surface representation in Sec. 4.1, then formu-
late a flow alignment energy for our representation in Sec. 4.2. We
first describe our variational optimization for the scalar function
Sec. 4.3, then reformulate it in the gradient domain Sec. 4.4. The dis-
cretized optimization and details of the gradient based optimization
are described in Sec. 5.

4.1 Implicit Surface Representation

Since the topology of our target surface is unknown a priori, we opt
for an implicit representation of our surface S = {x € Q : f(x) = 0}.
Here f : Q@ — R is a scalar field, and Q = [0, l]3 denotes our
chosen computational domain, a unit cube. While an isosurface
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Fig. 4. Given a 3D sketch I, our neural network outputs a gradient vector field g of an implicit function f representing the surface, which we reconstruct by
integrating the gradient field via Fast Fourier Transform (FFT). We train this network in unsupervised manner via variational optimization, which performs

Monte-Carlo integration sampling points on the input strokes (large green disks), the reconstructed surface (medium purple disks), and in the volume of the
computational domain Q (small orange disks). The samples involved in each loss and FFT reconstruction are denoted with those disks.

of a smooth function f is always closed, if some input strokes are
annotated as a boundary, we cut the surface along that boundary as
a post-processing step (Supplementary Sec.0.1.2).

We parameterize f via a neural network, which is later trained via
Adam [Kingma and Ba 2014]. For simplicity of exposition, we first
describe the variational optimization for the scalar field f directly
(Sec. 4.2, 4.3). Later we parameterize f via a gradient field and
formulate the final optimization in the gradient domain (Sec. 4.4).
The most important requirement stemming from the neural network
parameterization is the differentiability of our losses, which we now
introduce, starting with the core component — the flow field losses.

4.2 Flow Field

Our goal is to find a surface minimizing the flow-field energy (Eq. 3)
for an implicitly represented surface S. Naively following the method
for meshes [Pan et al. 2015] in our setup would mean extracting
a mesh at each iteration and solving for a smoothest flow field
in a differentiable manner. It is unclear how to differentiate that
optimization, as it involves numerous discrete decisions.

Instead, our main insight is to reparameterize Eq. 3, defining
II(A,U) = IIs. This way, the first term always evaluates to zero,
the flow field directions U and magnitudes A are no longer free
variables; they are, respectively, eigenvectors and eigenvalues of II.
Note that theoretically this makes our optimization different from
the optimization in Pan et al. [2015]: The flow fields they find are
not necessarily realizable as a surface, so they find a surface with
the closest prinicipal curvature field, effectively ‘projecting’ the flow
field onto some constraint set. In contrast, our optimization variable
is the surface itself, albeit represented implicitly, therefore we are
always constrained to this set, making our minima theoretically
different.

The flow field smoothness and alignment terms can be then for-
mulated directly in terms of the second fundamental form IIg, which
in turn can be expressed via the implicit function f. To formalize

this insight, denote the normalized gradient of f asn = %, equal

to the surface normal for points on the surface. The second funda-
mental form can be now expressed by differentiating the normal
via Eq. 2.

FLow FIELD ALIGNMENT. The alignment of a 2D vector with the
flow field can be measured as an alignment with some principal
direction. More specifically, given a stroke y; : [0, 1] — R3, we or-
thogonally project its tangent vector onto the tangent plane Ty, (1S,
forming the angle a with the largest principal direction p4, which
is an eigenvector of IIg (Sec. 3). We can now define the alignment
energy as

Lalign = |Tl| /r(cos(4a) - 1)2dl, (4)

where |T'| is the total length of sketch strokes. The 4-symmetry
integrand allows to measure alignment with any of the 2 orthogonal
principal directions.

Among all input strokes, [Pan et al. 2015] only consider flow lines
for principal curvature direction alignment. However, unlike clean
curve drawings where classification of input strokes into flow lines
vs. trim curves is relatively straightforward, such discrete decisions
are challenging for rough sketches. Instead of relying on heuristics,
our method treats all strokes the same. Since the majority of the 3D
strokes are flow lines (Sec. 3), this decision does not seem to lead to
any significant artifacts (e.g. rectangles in Fig.1 are not flow lines).

FLow FIELD SMOOTHNESS. Measuring smoothness of 2D cross
fields has been traditionally done via an angle § and integer period
jumps (e.g., 0; = 0; + Zk,k € Z), leading to an NP-hard mixed-
integer optimization [Bommes et al. 2009]. One of the more recent
approaches to expressing 2D cross field smoothness, with its 4-RoSy
symmetry, is via identifying each frame with a complex exponential
¢'? and measuring its smoothness [Ray and Sokolov 2015].

Such representation, however, does not naturally support cross
field singularities even when they are necessary for a smooth field
(Fig. 3a) [Huang et al. 2011; Ray and Sokolov 2015]. Instead, we
propose to allow for singularities and avoid the issue with the um-
bilical points by considering both the direction and magnitude of the
cross frame, following Zhang et al. [2020] and Palmer et al. [2020].
More precisely, we minimize the smoothness of IIg(x) directly, thus
optimizing smoothness of both principal curvatures and principal
directions simultaneously. This formulation allows singularities to
be naturally represented via a singular IIs. For the loss term, instead
of the more standard Dirichlet energy, we found Total Variation
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easier to optimize in our setup:

1
Lomootn = 75 /S |1V ST )

where |S| is the surface area, || - || is the Frobenius norm and Vg is
the covariant derivative. Note that we use the covariant derivative
(see Eq. 18) instead of the ambient space derivative to constrain our
differentiation to the surface tangent space and thus avoid unneces-
sarily smoothing the surface.

4.3 Variational formulation for scalar field f

We formulate a minimization problem for the implicit function
f : Q — R3 such that its zero isolevelset S = f~1(0) gives us the
desirable geometry:
min Lalign + Asmooth Lsmooth + AdataLdata + AEkLEK  (6)
f:Q-R
The first two terms are defined in Sec. 4.2. Details about the other
individual terms in Eq. 6 are below:

e DATA TERM. As our surface should follow the sketch (Sec. 3),
we encourage the zero isolevelset S to pass through or near
all strokes I via the following loss:

1
Laal) = 7 /r FldL. @

Although f is not a true distance function, the magnitude
of f(x) at x € S still serves as a proxy for distance to the
surface.

o EixoNAL TERM. The flow field losses and the data term are not
sufficient to produce a well-behaved implicit surface, trivially
minimizable by f = 0. A function with a dense set of critical
points (where its gradient vanishes) near its zero isolevelset
would also introduce numerical instability when extracting
the surface. Many prior works enforce an Eikonal constraint
|[Vf] = 1 to obtain a signed distance function (SDF). Rather,
following Huang et al. [2019], close to the zero isolevel S,
we would like our implicit function to locally behave like
an SDF, i.e., to have constant non-zero gradient norm, e.g.,
|[Vf| =~ 1. Instead of making the gradient norm exactly one,
in our experiments we found that using a smaller positive
constant improves the approximation of small details:

—L ¥)|| - 0)2 dx
Lot =g [ A9F001I -

Note that while the constant ¢ affects the local scaling of the
gradients, our other terms scale differently with the gradient
magnitude, so changing it will not cause simple scaling of
the whole gradient field. For instance, the alignment term
is magnitude-invariant, while the data term scales linearly.
Empirically we set o = 0.5.

Instead of explicitly enforcing piecewise smoothness (Sec. 3) by

adding regularization terms, we reparameterize our problem (Sec 4.4).

4.4 Neural Gradient Field

Typical neural surface reconstruction methods use a neural network
to predict a scalar implicit function f, for example, SDF [Park et al.
2019; Sitzmann et al. 2020]. However, the flow field loss involves

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

computing a third-order derivative of f (Sec. 4.2). This objective
is expensive and challenging to optimize, as neural networks tend
to struggle with learning smooth high-order derivatives in a stable
manner [Krishnapriyan et al. 2021; Wang et al. 2021]. An alterna-
tive is to optimize for a cross field separately [Dong et al. 2024a];
then aligning the implicit function with the field becomes more
challenging.

To address this problem, instead of predicting the function f itself,
we predict a vector field approximating the function’s gradient
g(x : ®) ~ Vf, which we refer to as ‘gradient field’ despite its
potential non-integrability. We parameterize g as a neural network
with the same architecture as SIREN [Sitzmann et al. 2020]; © are the
network parameters. Then the flow-aligned energy only involves
second-order derivatives of g, making our optimization more stable.

Most of the losses, including flow field losses, can be formulated
directly in terms of the vector field V f and therefore g. However, the
data term requires the implicit function itself, so we need to integrate
the vector field to evaluate this term (Sec. 4.4.1). Furthermore, this
new gradient field representation needs an extra regularization term
to make it approximately integrable (Sec. 4.4.2).

4.4.1 Vector Field Integration. To evaluate the data term and later
extract the zero level set, our goal is to find f that minimizes
fQ [IVF(x) — g(x)||?dx. Under the Euler-Lagrange formulation, the
minimum is the solution to the Poisson equation:

Af=V-g. ®)

The traditional finite element method suffers from scalability
issues, as the grid cell count grows cubically with resolution. To
address this, we solve the Poisson equation using the Fast Fourier
Transform (FFT) [Iserles 2008], enabling high-resolution solutions
with lower memory cost. FFT excels when working with periodic
functions, so we define the computational domain Q c R? as the
bounding box of the 3D sketch padded by 20% in all directions, with
opposite faces identified, effectively forming a 3D torus T3. Let g
be the gradient field sampled at grid cell centers. For frequencies u
(we use PyTorch fftfreq), we apply multimensional FFT to both
sides of the Poisson equation (Eq. 8). Denoting §(u) = FFT(g(x))
and f(u) =FFT(f(x)), we get:

FFT(Af) = —47°|[ul*’f  FFL(V-g) =27i(u-§).  (9)

The unnormalized solution f on grid is then computed as:

£ = IFFT(f) = IFFT (ﬂ) , (10)
—27|[ul|?
where © denotes the element-wise product, and trilinearly interpo-
lated to the whole volume. To align the zero iso-level with the input
stroke points x € T, we apply a scale-and-shift normalization [Peng
et al. 2021]:

1 1
f= W—o)l(f—m;rf(x)), (11)

where f(0) is the value at the corner of the bounding box; we use the
same symbol f on both sides for brevity. This normalization ensures
that the stroke points take values sufficiently distinct from those
at the domain boundaries, helping to better enforce the intended



constraints and avoid trivial harmonic solutions. See Suppl. Sect. 0.2
for more explanation.

4.4.2  Integrability and Curl-free Constraint. While the Poisson equa-
tion (Eq. 8) solves the gradient approximation problem in a least-
squares sense, this does not guarantee that the reconstructed sur-
face will follow the gradient field, as the gradient field can be non-
integrable, i.e., either have a harmonic component or have non-zero
curl. We explicitly avoid the harmonic solution through normal-
ization of the integral function f (Eq. 11), so integrability can be
enforced by minimizing curl of the computational domain Q:

&=E%AJWXﬂﬂWﬁ- (12)

4.4.3 Gradient-Based Variational Formulation. With these details,
we are now ready to formulate our optimization in the gradient
domain:
min Lalign + Asmooth-Lsmooth + AdataLdata + AEik LEik + AcLc
FIQ5R
g:Q—R3
st. Af=V.g
(13)

We use Asmooth = 0.01, Agata = 30, Agik = 7, Acurl = 7 to produce all
the results in the paper.

5 Discretization and Optimization

With the variational formulation above, we now discretize the neces-
sary operators and integrals, and describe our optimization strategy.

5.1 Discretization

First, we need to express the shape operator IIg(x) on the surface
via the predicted gradient field. As it is a differential of the normal
(Eq. 2), which is the normalized gradient of the implicit function, the
second fundamental form is related to the Hessian of the function.
Since it is an operator working with tangent vectors, we explicitly
project the Hessian onto the tangent space:

g (x) = ﬁp(x)H(x)P(x) = W;)“P(X)Vg(x)P(x), (14)

where

g7
llg(x)11?

is the projection operator, a symmetric 3 X 3 matrix. We convert

the second fundamental form to the local surface coordinates, for
arbitrary coordinate frame of the tangent space u,v € Tg:

Iy (x) = JT5(x) ], (16)

as in our setup, its integral is invariant to the choice of (orthonormal)
basis. Without loss of generality, we choose | = [u V] where u, v
are eigenvectors of IIg(x).

To implement the alignment term (Eq. 4), we project the curve
tangent vector y’(¢) onto the tangent plane T

Yoo () = JTY (1), 17)

convert it into polar coordinates (R, @) and substitute « into Eq. 4.
To implement the smoothness term (Eq. 5), we leverage the fact that

P(x)=I-n(x)n(x)’ =1 (15)
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the covariant derivative in Eq. 5 is the projection of the Euclidean
directional derivative:

VsIlyy (%) = P(x) VIIyy (x). (18)

Discretizing Integrals. To compute the integrals in Eq. 13, we use
naive Monte Carlo integration. We uniformly sample n; = 10k
points on the input strokes I, n; = 15k on the isosurface S and
n3 = 15k in Q. We discretize the integrands on the corresponding
samples, and approximate the integrals as the averages of those
values. The derivative operator V in all the equations is computed
via PyTorch’s automatic differentiation.

As the data term Lg,, (f) involves solving the Poisson equation
(Eq. 8), the quality of the reconstruction depends on the sampling
strategy for the right hand side in Eq. 10. Directly evaluating the
gradient function g at every grid point is impractical at high resolu-
tions. Instead, since we only need the isosurface, we evaluate g at
the set of samples ' U S, i.e., stroke points and zero isosurface points,
and then rasterize those values onto the grid points via trilinear
interpolation. Notice that I' U S produces a non-uniform sampling,
which causes the rasterized g to have larger magnitude near the
strokes. This additional magnitude makes the isolevel sets of f clus-
ter more densely around the strokes, which empirically facilitates
convergence but may introduce artifacts in the shape near those
regions. To mitigate this, we normalize the rasterized g at each grid
point before solving the Poisson equation once the optimization has
stabilized (see Suppl. Sec. 0.1.1 for more details).

5.2 Optimization Strategy

We use the default SIREN initialization with uniformly distributed
weights [Sitzmann et al. 2020]. At each iteration (Fig. 4), we sample
point setsT', S, and Q, predict gradients g, solve the Poisson equation
via FFT to obtain f, and extract its zero isosurface using marching
cubes. We then evaluate the loss terms and update parameters with
Adam [Kingma and Ba 2014]. Although sampling is technically
non-differentiable, this is not an issue in practice since the surface
evolves smoothly between steps. To bootstrap the optimization, we
perform an initialization stage where we avoid sampling the surface
that is not reliable in the beginning. To that end, we disable the
Lmooth term and only use the sample set T for the Eikonal term
Lgjk and sampling of the gradient field for the FFT Poisson solve.
Our initialization stage performs 200 steps of Adam, followed by
800 steps of the full optimization. For all our results, we set the grid
resolution to 256°. Please see Suppl. Sec. 0.1.1 for more details.

6 Results and Validation

Qualitative Evaluation. We have automatically generated a num-
ber of surfaces from 3D sketches of different styles and levels of
abstraction. These include clean curve networks, where each junc-
tion is precise (Fig. 10) and rough 3D sketches with gaps drawn via
VR interfaces (Fig. 11). Most of our results are closed shapes; we
show an example with a boundary in the Supplementary Material
(Suppl. Sec. 0.1.2).

Quantitative Evaluation. We have performed quantitative eval-
uations of our method in two different ways. First, we used the
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results of FlowRep [Gori et al. 2017] that takes a quadmesh and
produces a 3D curve network representing the shape; while those
curve networks are not designer-drawn 3D sketches, their method
is designed to replicate artistic practices for creating clean curve
networks. We then use their 3D curve networks as inputs and com-
pare our surfaces, as well as the results of other methods, with the
ground truth quadmeshes of [Gori et al. 2017]. For this experiment,
we set Eikonal o to 1.0, and cancel the normalization for vector inte-
gration. We use point set F-score [Wang et al. 2023] that measures
recall and precision by testing whether a point in one sample set
is within a certain range (0.01 in our experiments) from the points
in the other sample set. The results are presented in Tab. 1 and in
Fig. 5. Our results are closer to the ground truth in standard metrics
(Chamfer distance and F-score) for all but two of the inputs we tried.
Our method’s performance is statistically insignificant from the best
result (VIPSS) on one of the examples (doghead), and while Li et al.
[2023] is closer to the ground truth for the phone input, our method
generates better shapes overall (Fig. 5).

Comparison to previous work. For structured curve networks,
where the connectivity is precise and all the junctions are exact, the
method of Pan et al. [2015] produces nearly perfect results (Fig. 6).
Those networks are hard to create in modern interfaces [Yu et al.
2022]: their method does not work for much more commonly used
rough 3D sketches (Fig. 11). Our method works for both clean and
rough 3D sketches and produces surfaces that are similar in shape
due to a similar energy, albeit somewhat smoother due to the inher-
ent smoothness of our gradient integration.

We run our method on a set of clean curve networks (Fig. 10) and
rough sketches (Fig. 11) collected from [Huang et al. 2019; Pan et al.
2015; Yu et al. 2022], and compare our results with the previous
surface reconstruction methods: VIPSS [Huang et al. 2019], PGR
[Lin et al. 2022], IPSR [Hou et al. 2022], NeuralGF [Li et al. 2023], and
two normal orientation methods that use [Kazhdan et al. 2006] for
surfacing: GCNO [Xu et al. 2023] and WNNC [Lin et al. 2024]. These
methods input point clouds, so we resample each sketch stroke with
segment length of 0.02 — we found this sampling works best for
their methods. Unlike our method that relies on stroke tangents as
well as positions, their methods ignore stroke connectivity, only
using sampled points. On clean curve networks (Fig. 10), our results
are either on par (box) or significantly better (dress, iron, sewing
machine, coffee machine). Those sparse clean curve networks are
particularly challenging for the methods that reconstruct the surface
from normals defined on strokes (GCNO, WNNC, IPSR), since with-
out any normals between the strokes, [Kazhdan et al. 2006] often
does not perform well. The VIPSS result for the coffee machine is of
similar quality to ours, but the bulging top surface is inconsistent
with perception, as discussed in [Pan et al. 2015].

On rough 3D sketches (Fig. 1, 11), our pipeline is often better at
reconstructing smaller details and thin features (e.g. gamepad and
guitar). For other, denser sketches, our results are on par with the
best previous methods, as the ambiguity we address with the flow
energies is less for denser sketches.

Ablations and Parameters. We study the effect of each of our loss
terms in an ablation study Fig. 9. Without the alignment term, the
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surface merely passes through the curves but does not align its cur-
vature lines with them. Conversely, when the flow field smoothness
is disabled, the principal curvature directions align with the input
curves, but the curvature field lacks smooth interpolation across the
surface. Without the Eikonal or curl-free terms, the optimization
does not produce useful surfaces or does not converge.

Performance. On our NVIDIA GeForce RTX 4080 (16 GiB VRAM)
with AMD Ryzen 7 7700X, our Python implementation takes around
10 minutes per input. VIPSS takes between 40 seconds and hours,
depending on sampling; WNNC, PGR, and IPSR take a few seconds
per input; NeuralGF takes = 70 seconds per input; GCNO ranges
from 4-150 seconds. Most of our time is spent in the Poisson solver.
We can improve the performance by running the solver once every
few iterations or adopting a multi-resolution strategy.

Limitation: sharp features. Due to Poisson surface reconstruction
intrinsic smoothness and finite grid resolution, sharp features are
a challenge for our method. However, our method can be seen as
complementary to the method by Yu et al. [2022] that deforms an
input template to fit a 3D sketch, forming sharp features at the
curves. They use either manually created templates or outputs of
VIPSS [Huang et al. 2019]. Our method doesn’t require any templates
as input, but can be viewed as a method to generate those templates
for their method. In Fig. 8 we show that this way we can further
improve the quality of the results.

Other limitations and Future Work. For sparse 3D sketches, our
method can occasionally misinterpret thin features (Fig. 7), such as
the wall of the bathtub. We hypothesize that one of the reasons why
it is not ambiguous for human observers is because we recognize
the object; our method, in contrast, has no data priors. Perhaps
combining our method with a data prior can further disambiguate
such sketches.

7 Conclusions

We have presented a novel method for surfacing rough 3D sketches
and clean 3D networks that supports arbitrary topology and intro-
duces a flow field alignment and smoothness loss amenable with
neural implicit representation. Our method makes a step forward to-
wards fully functional 3D sketch-based modeling software, enabling
intuitive modeling in 3D.
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